0=4.9t^2+40t-50

Simple and best practice solution for 0=4.9t^2+40t-50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4.9t^2+40t-50 equation:



0=4.9t^2+40t-50
We move all terms to the left:
0-(4.9t^2+40t-50)=0
We add all the numbers together, and all the variables
-(4.9t^2+40t-50)=0
We get rid of parentheses
-4.9t^2-40t+50=0
a = -4.9; b = -40; c = +50;
Δ = b2-4ac
Δ = -402-4·(-4.9)·50
Δ = 2580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2580}=\sqrt{4*645}=\sqrt{4}*\sqrt{645}=2\sqrt{645}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{645}}{2*-4.9}=\frac{40-2\sqrt{645}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{645}}{2*-4.9}=\frac{40+2\sqrt{645}}{-9.8} $

See similar equations:

| k4=3.3 | | 88=6(7+a)+4 | | 12-x*2=8 | | 0=-4.9t^2+40t-50 | | g+23/10=5 | | 3.8=v3 | | 20=5(j-91) | | 7n+5n=8 | | 7-5k-4=18 | | 3x+8=9x | | 12=8+2v | | -4(-7p-2)-8p=-132 | | (x^2-7x)^2=2(x^2-7x)+48 | | 12(x+1)=11x-8 | | 8x+7-7x-10=10 | | 14x=9x+30 | | 185=-5(5a+3) | | 8x+7x-10=10 | | x+3/7=5/8 | | -9=5-3x+1 | | -5(-6r+2)=-100 | | 5/2t-7=1 | | X+3=5x+20 | | 12x+10=18x | | 2|x+8|=3|x+5| | | -3=v-6+3 | | 6(-5-4x)=-174 | | 6xx5=25 | | 6x*5=25 | | 15=6-6x-3 | | 8-3f=5 | | n+0=1 |

Equations solver categories